WEB SCRAPING WITH R: AUTOMATING DATA COLLECTION FROM THE INTERNET

Ivan Hernandez, Ph.D
GOALS FOR THE SESSION

› Discuss the Growing Interest in Data

› Introduce Automated Data Collection Methodology

› Describe the Process of Automating Data Collection

› Present Methods to Extract Data from the Web

All Session Materials available at: ivanhernandez.com/webscraping
DATA TODAY
Data driven decisions being emphasized

Age of Big Data
 • Larger
 • More Frequent
 • More Varied

Where to access this data?
SOURCES OF BIG DATA

Financial Indicators

- Financial Indicators
 - Employee Information

Social Media

- Social Media
 - Employee Information

Knowledge Bases

- Knowledge Bases
 - Employee Information

News

- News
 - Employee Information

Big Data

- Big Data
 - Employee Information

Sports

- Sports
 - Employee Information

Trump's Tariffs Stoke Fears That Trade War Will 'Kill' U.S. Jobs

- Trump's Tariffs Stoke Fears That Trade War Will 'Kill' U.S. Jobs
 - Employee Information

Around the World, Threats of Revolution

- Around the World, Threats of Revolution
 - Employee Information
Web-based data can also facilitate market intelligence and examining both collective and individual behavior in social settings.

Provides the following knowledge benefits:
- Pricing analysis
- Competitive intelligence
- Events
- Product data
- Popularity
- Reputation
How to collect this available data?

Human collection method:
- Sit in front of a computer
- Go to a website of interest
- Copy the relevant data
- Paste into a common file
- Repeat 1,000,000 times for other data and other websites
Limitations of Human Collection:

- Menial
- Mental Demands
- Inaccuracy
- Cost
- Scalability
 › Consider the following analogy:

 › “The Sorcerer’s Apprentice”

 › Mickey Mouse is tasked with helping a sorcerer

 › Needs to clean an entire castle
COLLECTING BIG DATA

› The required job is:

› Menial
› Demanding
› Requires precision
› Costly (in time)
› Costly (in wage)
› Not scalable
Mickey solves problem by taking something inanimate, and giving it the ability to perform the task, as well the instructions it needs to follow.
COLLECTING BIG DATA

- The inanimate objects complete the task autonomously
- Mickey is free to spend his time in more productive ways
- The process is easily scaled
- Can conduct the task more efficiently, with little additional effort
AUTOMATED DATA COLLECTION
Automated Data collection is about being able to translate what you would do as a human collecting the data to what your computer can do.

Goal: Give a computer a set of instructions to follow

- First do this...
- Then do that...
- Finally do this...

Let the computer carry-out those instructions, and you come back to a completed project.

How do you talk to a computer?
We can tell a computer what to do using programming languages:

- R
- Python
- C
- Java

To tell a computer what to do using a programming language requires:

- Understanding how a computer sees things
- Understanding what the functions that are available within that language
THINKING LIKE A COMPUTER

™Automating requires you to consider what are the capabilities and limitations of a computer

This Title is in an H1 tag

This text is inside a div tag, whose class is equal to box1
This text is inside a div tag, whose class is equal to box2
This text is inside a span tag, whose class is equal to box3
This text is inside a p tag, whose id is equal to box4

This is a link to Google

Additional Content: This content is not inside any tag
Know the functions/instruction that are available from the programming language

Automated Data collection is about being able to translate what you would do as a human collecting the data to corresponding steps of what your computer can do

Example: Download the Main Headline from the New York Times

What you would do:
- Go to the New York Times website
- Look at the text in the main heading
- Copy that headline with the mouse
- Open a text file called “data.txt”
- Paste the copied text in the file
- Save it

What your computer can do:
- `page = read_html("http://nyt.com")`
- `headline = html_node(page, "h1")`
- `text = html_text(headline)`
- `fileconnection = file("data.txt")`
- `writelines(text, fileconnection)`
- `close(fileconnection)`
You have to think about everything you would do, and how your computer can do it.

First, think how would YOU download the latest stock prices for Apple?

- I would go to Google Finance (https://www.finance.google.com)
- I would type in “Apple” at the search bar
- I would look for the bold number
- I would copy the price
- I would open a text file
- I would paste the price into the file
- I would save the file and close it
Next, think about how can you have your COMPUTER do those same steps:

- It would be hard to have a computer type in a search box, so I have to think of a way for it to access a stock another way - THINK ABOUT WHAT A COMPUTER CAN DO

- Notice that the url for Apple’s stock price page is:
 - https://finance.google.com/finance?q=aapl
 - The stock name always comes after “q=”

- If I know the stock name, I can tell a computer to go to that page
- I can tell a computer to look for text tagged as bold
- I can tell a computer to save the bold text as a variable called “price”
- I can tell the computer to open a file
- I can tell the computer to write the stock price variable in the file
- I can tell the computer to save and close the file
Four Steps to Automatically Collecting Data (Scraping)

- **Download** the HTML source of a page
- **Extract** the content from the HTML
- **Save** the content
- **Repeat** the process on a different Page

Each of those steps has specific commands in R associated with it

Successfully collecting data requires chaining those commands together
STEP 1: DOWNLOAD THE HTML SOURCE

- Download the HTML source of a page

 R Command

  ```r
  library(rvest)
  webpage <- read_html("https://www.google.com/finance?q=APPL")
  ```
STEP 2: EXTRACTING THE CONTENT

› Extract the content

We’ll get to this part in a minute...
STEP 3: SAVE THE CONTENT

- **Save the Content**

- **R Command**

  ```r
  write(content,"data.txt",append=TRUE)
  ```
Repeat the Processes

R Command

```r
stocks <- c("AAPL", "GOOGL", "MSFT")
for (stock in stocks){
  *** extract content ***
}
```
The hardest part of automated data collection is extracting the content

Code must be customized to your particular situation

Depends on:
- How much content is needed (one thing or many?)
- The structure of the HTML (is it bold?, is it a heading?, is it italicized?)
- The kind of content (is it text?, is it a url?, is it an image?)

We will go over the major cases/situations that you could have
EXTRACTING CONTENT FROM WEB SITES
Extracting content from a website requires understanding how websites are written

Websites are written in HTML

Text is formatted by putting it in between “tags”, which describe the way it should be displayed in a browser

Typically each tag has an opening tag and a closing tag, which isolate the specific text to be formatted

Example:

- `<h1>Hello</h1>`
- `<i>Hello</i>`
- `<u>Hello</u>`
- `Hello`
To view the raw HTML of a website (i.e., the source), you can

- Chrome/Firefox/Opera/Internet Explorer: Ctrl + U
- Safari: Command + Option + U

```html
<html>
<head>
  <title>Example Domain</title>
</head>
<body>
  <h1>Example Domain</h1>
  <p>
    "This domain is established to be used for illustrative examples in documents. You may use this domain in examples without prior coordination or asking for permission."
  </p>
  <p>
    <a href="http://www.iana.org/domains/example">More information...</a>
  </p>
</body>
</html>
```

The HTML source of http://example.com
Recommended way! - INSPECT THE ELEMENT IN CHROME

You can also right-click on a specific part of a website and select “Inspect” to more easily examine a specific part of the HTML.
This Title is in an H1 tag

This text is inside a div tag, whose class is equal to box1

This text is inside a div tag, whose class is equal to box2

This text is inside a span tag, whose class is equal to box3

This text is inside a p tag, whose id is equal to box4

This is a link to Google

Additional Content: This content is not inside any tag
This Title is in an H1 tag

This text is inside a div tag, whose class is equal to box1

This text is inside a div tag, whose class is equal to box2

This text is inside a span tag, whose class is equal to box3

This text is inside a p tag, whose id is equal to box4

This is a link to Google

Additional Content: This content is not inside any tag

The main heading is inside of an <h1> tag
This Title is in an H1 tag

This text is inside a div tag, whose class is equal to box1
This text is inside a div tag, whose class is equal to box2
This text is inside a span tag, whose class is equal to box3
This text is inside a p tag, whose id is equal to box4
This is a link to Google

Additional Content: This content is not inside any tag

The second line is inside a <div> tag with a class equal to “box1”
READING THE STRUCTURE OF A WEBSITE

This Title is in an H1 tag

This text is inside a div tag, whose class is equal to box1

This text is inside a div tag, whose class is equal to box2

This text is inside a span tag, whose class is equal to box3

This text is inside a p tag, whose id is equal to box4

This is a link to Google

Additional Content: This content is not inside any tag

The third line is inside a <div> tag with a class equal to “box2”
This Title is in an H1 tag

This text is inside a div tag, whose class is equal to box1

This text is inside a div tag, whose class is equal to box2

This text is inside a span tag, whose class is equal to box3

This text is inside a p tag, whose id is equal to box4

This is a link to Google

Additional Content: This content is not inside any tag

The fourth line is inside a tag with a class equal to “box3”
This Title is in an H1 tag

This text is inside a div tag, whose class is equal to box1

This text is inside a div tag, whose class is equal to box2

This text is inside a span tag, whose class is equal to box3

This text is inside a p tag, whose id is equal to box4

This is a link to Google

Additional Content: This content is not inside any tag

The fourth line is inside a <p> tag with an id equal to “box4”
This Title is in an H1 tag

This text is inside a div tag, whose class is equal to box1
This text is inside a div tag, whose class is equal to box2
This text is inside a span tag, whose class is equal to box3
This text is inside a p tag, whose id is equal to box4

This is a link to Google

Additional Content: This content is not inside any tag

The fifth line is inside an <a> tag with an href that directs to google.com
This Title is in an H1 tag

This text is inside a div tag, whose class is equal to box1

This text is inside a div tag, whose class is equal to box2

This text is inside a span tag, whose class is equal to box3

This text is inside a p tag, whose id is equal to box4

This is a link to Google

Additional Content: This content is not inside any tag

The fifth line is NOT inside any tags
Extracting Content from a Web Page

When you have the HTML source of a website, you need to examine where in the source is the content you want to extract:

- What are its closest tags?
- Are those tags unique to the content?
- Does the tag have an id or class name?
- Does some specific word or character always precede the content of interest?

When you know the answers to the above questions, you direct Python to extract the content based on the identifying information.
DEMONSTRATION OF DATA EXTRACTION
Walkthrough of How to Extract Web Page Content With R:

- Connect to session wifi network:
 - Network ID: “DataCollectionWorkshop”

- Go to the following URL in Chrome:
 - 192.168.1.2:8888
There’s a growing interest in the benefits of “Big Data”

The internet provides a vast source of data

Data can be collected from the internet at scale through automation

Automated data collection involves thinking of the steps a human would take when collecting the data, and translating those steps to procedures a computer can understand

Using the rvest library, R provides a method for automating data collection from the internet.
SPSP encourages you to rate the sessions using the SPSP mobile app or desktop site

For questions & comments:

Ivan Hernandez, Ph.D
DePaul University
ivan.hernandez@depaul.edu